Wojciech Młocek

University of Agriculture of Krakow, Poland wmlocek@ar.krakow.pl

Reflexivity of the Toeplitz operators on the Hardy space on the upper half–plane

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the algebra of all linear and bounded operators on \mathcal{H} . A *reflexive closure* of a subspace $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$ is given by

ref
$$\mathcal{S} = \{ B \in \mathcal{B}(\mathcal{H}) : Bh \in \overline{\mathcal{S}h} \text{ for all } h \in \mathcal{H} \}.$$

It is clear that $S \subset \operatorname{ref} S \subset \mathcal{B}(\mathcal{H})$. The subspace S is said to be *reflexive*, if $\operatorname{ref} S = S$ and *transitive*, if $\operatorname{ref} S = \mathcal{B}(\mathcal{H})$.

A dichotomy (reflexive or transitive) behavior of subspaces of Toeplitz operators on the Hardy space on the unit disc was shown in [1]. There were presented conditions where the subspace is reflexive (not transitive) by existence of a Toeplitz operator in the predual with logarithmically summable symbol. Our aim is to find parallel characterization of subspaces of Toeplitz operators on the Hardy space on the upper half-plane.

The Hardy space $H^2(\mathbb{C}_+)$ on the upper half-plane $\mathbb{C}_+ = \{z \in \mathbb{C} : \text{Im } z > 0\}$ is the space of all analytic functions $F : \mathbb{C}_+ \to \mathbb{C}$ such that

$$||F||_{H^2(\mathbb{C}_+)} := \sup_{y>0} \left(\int_{-\infty}^{\infty} |F(x+iy)|^2 dx \right)^{\frac{1}{2}} < \infty.$$

Since, for any function from $H^2(\mathbb{C}_+)$, there are limits a.e. from the upper half-plane to the real line, $H^2(\mathbb{C}_+)$ can be regarded as a subspace of $L^2(\mathbb{R})$ (see [2]). Let $P_{H^2(\mathbb{C}_+)}$ denote the orthogonal projection of $L^2(\mathbb{R})$ onto $H^2(\mathbb{C}_+)$.

For each $\Phi \in L^{\infty}(\mathbb{R})$ the *Toeplitz operator* with symbol Φ is an operator $T_{\Phi} \in \mathcal{B}(H^2(\mathbb{C}_+))$ defined by

$$T_{\Phi}F = P_{H^2(\mathbb{C}_+)}(\Phi F), \ F \in H^2(\mathbb{C}_+).$$

Let $\mathcal{T}(\mathbb{C}_+)$ denote the space of all Toeplitz operators.

The main result is

Theorem 1 Suppose $\mathcal{F} \subset \mathcal{T}(\mathbb{C}_+)$ is a weak^{*} closed subspace. Then the following statements are equivalent.

1. \mathcal{F} is not transitive.

- 2. There is a function $F : \mathbb{R} \to \mathbb{C}$ such that $F \in L^1(\mathbb{R})$, $\log |F| \in L^1(\mathbb{R}, \frac{dt}{1+t^2})$ and $\int_{\mathbb{R}} \Phi F dt = 0$ for all $T_{\Phi} \in \mathcal{F}$.
- 3. \mathcal{F} is reflexive.

Since the weak^{*} topology plays important role in the proof the classical isomorphism between L^1 spaces on the real line and on the unit circle have to be redefined to get the proper relationship between weak^{*} topology on the Toeplitz operators on the Hardy space on the upper half-plane and the Toeplitz operators on the Hardy space on the unit disc.

Joint work with M. Ptak.

References

- E. A. Azoff, M. Ptak, A Dichotomy for Linear Spaces of Toeplitz Operators, J. Funct. Anal. 156, 411-428 (1998).
- [2] P. Koosis, *Introduction to* H_p *Spaces*, Cambridge University Press, Cambridge 1980.
- [3] W. Młocek, M. Ptak, On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane, accepted for publication.